Observational Cosmology / Cosmic Microwave Background Radiation

  1. Zel'dovich Ya B: Observations in a Universe Homogeneous in the Mean, Sov. Astron. 8 (1964), 13-16
  2. Kristian J, R K Sachs: Observations in Cosmology, Astroph. J. 143 (1966), 379-399.
    Reprinted: Gen. Rel. Grav. 43 (2011), 337-358 (GRG "Golden Oldie").
    NB: Appearence of $E_{ab}$ and $H_{ab}$ as geometrical parameters rather than evolved dynamical quantities.
  3. Sachs R K, A M Wolfe: Perturbations of a Cosmological Model and Angular Variations of the Microwave Background, Astroph. J. 147 (1967), 73-90.
    Reprinted: Gen. Rel. Grav. 39 (2007), 1929-1961 (GRG "Golden Oldie").
  4. Thorne K S: Primordial Element Formation, Primordial Magnetic Fields, and the Isotropy of the Universe, Astroph. J. 148 (1967), 51
    NB: Constrains the free parameters in LRS OSH cosmological models of Kantowski-Sachs, Type-I and Type-III on the basis of observational data consisting of number counts, CMBR anisotropy and primordial element abundances.
  5. Ehlers J, P Geren, R K Sachs: Isotropic Solutions of the Einstein-Liouville Equations, J. Math. Phys. 9 (1968), 1344-1349
  6. Ellis G F R: Relativistic Cosmology, General Relativity and Cosmology, Proceedings of the XLVII Enrico Fermi Summer School, Ed R K Sachs, (New York: Academic Press, 1971), 104-182.
    Reprinted: Gen. Rel. Grav. 41 (2009), 581-660 (GRG "Golden Oldie").
    NB: 1+3.
  7. Dyer C C, R C Roeder: Distance-Redshift Relations for Universes with some Intergalactic Medium, Astrophys. J. 180 (1973), L31-L34
  8. Barrow J D: Quiescent Cosmology, Nature 272 (1978), 211
  9. Ellis G F R: The Homogeneity of the Universe, Gen. Rel. Grav. 11 (1979), 281-289. Also: The Homogeneity of the Universe, 1979.
    NB: Winning Essay of the 1979 Gravity Research Foundation Award.
  10. Ellis G F R: Limits to Verification in Cosmology, Ann. N. Y. Acad. Sci. 336 (1980), 130
  11. Barrow J D, R Juszkiewicz, D H Sonoda: Universal Rotation - How Large Can It Be?, Mon. Not. R. Astron. Soc. 213 (1985), 917-943
  12. Ellis G F R, S D Nel, R Maartens, W R Stoeger, A P Whitman: Ideal Observational Cosmology, Phys. Rep. 124 (1985), 315-417
  13. Bonnor W B, G F R Ellis: Observational Homogeneity of the Universe, Mon. Not. R. Astron. Soc. 218 (1986), 605
    NB: Introduces the "Postulate of Uniform Thermal Histories (PUTH)".
  14. Futamase T, M Sasaki: Light Propagation and the Distance-Redshift Relation in a Realistic Inhomogeneous Universe, Phys. Rev. D 40 (1989), 2502-2510
  15. Van den Bergh N: Kinematical Homogeneity and Observational Homogeneity of the Universe, Class. Quantum Grav. 6 (1989), 797-821
  16. Collins C B: The Postulate of Uniform Thermal Histories: a New Formulation and its Application to a Special Class of Spacetimes, Class. Quantum Grav. 7 (1990), 1983-2003
  17. Liddle A R, D H Lyth: COBE, Gravitational Waves, Inflation and Extended Inflation, Phys. Lett. 291B (1992), 391
  18. Stoeger SJ W R, S D Nel, R Maartens, G F R Ellis: The Fluid-Ray Formulation of Einstein's Field Equations, Class. Quantum Grav. 9 (1992), 493-507
  19. Stoeger SJ W R, G F R Ellis, S D Nel: Observational Cosmology: III. Exact Spherically Symmetric Dust Solutions, Class. Quantum Grav. 9 (1992), 509-525
    NB: Lemaître-Tolman-Bondi models.
  20. Stoeger SJ W R, S D Nel, G F R Ellis: Observational Cosmology: IV. Perturbed Spherically Symmetric Dust Solutions, Class. Quantum Grav. 9 (1992), 1711-1723
    NB: FLRW-perturbations; first and second-order solutions provided.
  21. Stoeger SJ W R, S D Nel, G F R Ellis: Observational Cosmology: V. Solution of the First-Order General Perturbation Equations, Class. Quantum Grav. 9 (1992), 1725-1751
  22. Ferrando J J, J A Morales, M Portilla: Revision of the Sachs-Wolfe Effect, Class. Quantum Grav. 10 (1993), S215
  23. Coles P, G F R Ellis: The Case for an Open Universe (Review Article), Nature 370 (1994), 609
  24. Maartens R, D R Matravers: Isotropic and Semi-Isotropic Observations in Cosmology, Class. Quantum Grav. 11 (1994), 2693
  25. Partridge R B: The Cosmic Microwave Radiation and Cosmology, Class. Quantum Grav. 11 (1994), A153
  26. Stoeger W R, G F R Ellis, C Xu: Observational Cosmology: VI. The Microwave Background and the Sachs-Wolfe Effect, Phys. Rev. D 49 (1994), 1845-1853
  27. Maartens R, G F R Ellis, W R Stoeger: Limits on Anisotropy and Inhomogeneity from the Cosmic Background Radiation, Phys. Rev. D 51 (1995), 1525-1535. Also: Preprint astro-ph/9501016.
  28. Maartens R, G F R Ellis, W R Stoeger: Improved limits on Anisotropy and Inhomogeneity from the Cosmic Background Radiation, Phys. Rev. D 51 (1995), 5942-5945
  29. Stoeger W R, R Maartens, G F R Ellis: Proving Almost-Homogeneity of the Universe: An Almost Ehlers-Geren-Sachs Theorem, Astrophys. J. 443 (1995), 1
  30. Bunn E F, P G Ferreira, J Silk: How Anisotropic is Our Universe?, Phys. Rev. Lett. 77 (1996), 2883-2886. Also: Preprint astro-ph/9605123.
  31. Maartens R, N P Humphreys, D R Matravers, W R Stoeger: Inhomogeneous Universes in Observational Coordinates, Class. Quantum Grav. 13 (1996), 253-264. Also: Preprint gr-qc/9511045.
    NB: LTB. Corrigendum: Class. Quantum Grav. 13 (1996), 1689.
  32. Dunsby P K S: A Fully Covariant Description of Cosmic Microwave Background Anisotropies, Class. Quantum Grav. 14 (1997), 3391-3405. Also: Preprint gr-qc/9707022.
    NB: Contains a few minor typos.
  33. Hu W, N Sugiyama, J Silk: The Physics of Microwave Background Anisotropies (Review Article), Nature 386 (1997), 37. Also: Preprint astro-ph/9604166.
    NB: Physical effects discussed depend on assumption of linear evolution of perturbations in matter and gravitational field and that their interrelation can be described by Newtonian gravitation theory.
  34. Mustapha N, C Hellaby, G F R Ellis: Large Scale Inhomogeneity Versus Source Evolution - Can We Distinguish Them Observationally?, Mon. Not. R. Astron. Soc. 292 (1997), 817-830. Also: Preprint arXiv:gr-qc/9808079v1.
  35. Silk J: A Short History of the Universe, (New York: Sci. Am. Lib., 2nd Ed., 1997)
  36. Challinor A, A Lasenby: Covariant and Gauge-Invariant Analysis of Cosmic Microwave Background Anisotropies from Scalar Perturbations, Phys. Rev. D 58 (1998), 023001. Also: Preprint astro-ph/9804150.
  37. Ellis G F R, B A C C Bassett, P K S Dunsby: Lensing and Caustic Effects on Cosmological Distances, Class. Quantum Grav. 15 (1998), 2345-2361. Also: Preprint gr-qc/9801092.
  38. Holz D E, R M Wald: New Method for Determining Cumulative Gravitational Lensing Effects in Inhomogeneous Universes, Phys. Rev. D 58 (1998), 063501 (1-23). Also: Preprint astro-ph/9708036.
  39. Jones A W, A N Lasenby: The Cosmic Microwave Background, Max-Planck-Gesellschaft Living Reviews Series, No. 1998-11
  40. Hogg D W: Distance Measures in Cosmology, Preprint arXiv:astro-ph/9905116v4
  41. Peebles P J E: Is Cosmology Solved? (An Astrophysical Cosmologist's Viewpoint), Publ. Astron. Soc. Pac. 111 (1999), 274. Also: Preprint astro-ph/9810497.
  42. Ellis G F R: 83 Years of General Relativity and Cosmology: Progress and Problems (Review), Class. Quantum Grav. 16 (1999), A37-A75
  43. Ellis G F R, H van Elst: Cosmological Models, Cargèse Lectures 1998, in Theoretical and Observational Cosmology, Ed. M Lachièze-Rey, (Dordrecht: Kluwer, 1999), 1-116 and NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 541 1-116. Also: Preprint arXiv:gr-qc/9812046v5.
  44. Hasse W, V Perlick: On Spacetime Models with an Isotropic Hubble Law, Class. Quantum Grav. 16 (1999), 2559-2576
  45. Maartens R, T Gebbie T, G F R Ellis: Cosmic microwave background anisotropies: Non-linear dynamics, Phys. Rev. D 59 (1999), 083506 (1-19). Also: Preprint astro-ph/9808163.
  46. Nilsson U S, C Uggla, J Wainwright, W C Lim: An Almost Isotropic Cosmic Microwave Temperature does not Imply an Almost Isotropic Universe, Astrophys. J. 522 (1999), L1-L3. Also: Preprint astro-ph/9904252.
  47. Barrett R K, C A Clarkson: Undermining the Cosmological Principle: Almost Isotropic Observations in Inhomogeneous Cosmologies, Class. Quantum Grav. 17 (2000), 5047. Also: Preprint astro-ph/9911235.
  48. Challinor A: Microwave Background Anisotropies from Gravitational Waves: the 1+3 Covariant Approach, Class. Quantum Grav. 17 (2000), 871-889. Also: Preprint astro-ph/9906474.
  49. Challinor A: The Covariant Perturbative Approach to Cosmic Microwave Background Anisotropies, Gen. Rel. Grav. 32 (2000), 1059-1074. Also: Preprint astro-ph/9903283.
  50. Challinor A: Microwave Background Polarization in Cosmological Models, Phys. Rev. D 62 (2000), 043004 (1-16). Also: Preprint astro-ph/9911481.
  51. Disney M J: The Case Against Cosmology, Gen. Rel. Grav. 32 (2000), 1125-1134. Also: Preprint astro-ph/0009020.
  52. Freedman W L et al: Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, Astrophys. J. 553 (2001), 47-72. Also: Preprint astro-ph/0012376.
    NB: $H_{0} = (72 \pm 8) {\rm km}{\rm s}^{-1}{\rm Mpc}^{-1}$.
  53. Lahav O: New Cosmological Data and the `Best-Fit' FRW Universe (Review), Preprint astro-ph/0105353.
    NB: Assumes spatially flat ΛCDM FLRW model with scale-invariant adiabatic initial power spectrum. Estimates cosmological parameters by joint analisis of data from CMBR, type Ia supernovae, peculiar velocities, cluster abundance and redshift surveys. Best fit model has $\Omega_{\rm m} = 0.28$, $h = 0.74$, $\sigma_{8} = 1.17$.
  54. Weinberg S: Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge, Preprint astro-ph/0103279
  55. Weinberg S: Fluctuations in the Cosmic Microwave Background II: $C_\ell$ at Large and Small $\ell$, Preprint astro-ph/0103281
  56. Lahav O: Observational tests of FRW world models, Class. Quantum Grav. 19 (2002), 3517-3526
  57. Jensen J B, J L Tonry, J P Blakeslee: The Extragalactic Distance Scale, Preprint astro-ph/0304427
  58. Hoyle F, M S Vogeley: Voids in the Two-Degree Field Galaxy Redshift Survey, Astrophys. J. 607 (2004), 751-764. Also: Preprint arXiv:astro-ph/0312533v1.
  59. Lahav O, Y Suto: Measuring our Universe from Galaxy Redshift Surveys, Max-Planck-Gesellschaft Living Reviews Series, No. 2004-8
  60. Eisenstein D J et al.: Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys. J. 633 (2005), 560-574. Also: Preprint arXiv:astro-ph/0501171v1.
  61. Gott III J R, M Jurić, D Schlegel, F Hoyle, M Vogeley, M Tegmark, N Bahcall, J Brinkmann: A Map of the Universe, Astrophys. J. 624 (2005), 463-484. Also: Preprint arXiv:astro-ph/0310571v2.
  62. Jaffe T R, A J Banday, H K Eriksen, K M Górski, F K Hansen: Evidence of Vorticity and Shear at Large Angular Scales in the WMAP Data: a Violation of Cosmological Isotropy?, Astrophys. J. 629 (2005), L1-L4. Also: Preprint astro-ph/0503213.
  63. Piran T: The Physics of Gamma-Ray Bursts, Rev. Mod. Phys. 76 (2005), 1143-1210. Also: Preprint arXiv:astro-ph/0405503v1.
  64. Lahav O, A R Liddle: The Cosmological Parameters 2005, Preprint astro-ph/0601168
  65. Lewis A, A Challinor: Weak Gravitational Lensing of the CMB, Phys. Rep. 429 (2006), 1-65. Also: Preprint arXiv:astro-ph/0601594v4.
  66. Sandage A, G A Tammann, A Saha, B Reindl, F D Macchetto, N Panagia: The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids, Astrophys. J. 653 (2006), 843-860. Also: Preprint astro-ph/0603647.
    NB: $H_{0} = (62.3 \pm 1.3 \pm 5.0) {\rm km}{\rm s}^{-1}{\rm Mpc}^{-1}$.
  67. Coley A A, W C Lim: Cosmic Microwave Background Limits on Spatially Homogeneous Cosmological Models with a Cosmological Constant, Class. Quantum Grav. 24 (2007), 889-895. Also: Preprint astro-ph/0610498.
  68. Rindler W, M Ishak: Contribution of the Cosmological Constant to the Relativistic Bending of Light Revisited, Phys. Rev. D 76 (2007), 043006 (1-5)
  69. Wiltshire D L: Cosmic Clocks, Cosmic Variance and Cosmic Averages, New J. Phys. 9 (2007), 377 (1-66). Also: Preprint arXiv:gr-qc/0702082v4.
    NB: (- + + +); quasilocal "uniform proper expansion" temporal gauge; based on a two-scale (spatially flat filaments and bubble walls; voids of constant negative spatial curvature) solution of Buchert's averaged equations for dust cosmologies for the period between last scattering and now; late-time attracting solution corresponds to Einstein-de Sitter in walls and Milne in voids; assumes on the scales of spatial averaging the vanishing of the matter pressure, shear and vorticity.
  70. Leith B M, S C Cindy Ng, D L Wiltshire: Gravitational Energy as Dark Matter: Concordance of Cosmological Tests, Astrophys. J. 672 (2008), L91-L94. Also: Preprint arXiv:0709.2535v2 [astro-ph].
    NB: Employs 182 SNe Ia data points of the "Gold07 data set" of Riess et al 2007.
  71. Marra V, E W Kolb, S Matarrese: Light-Cone Averages in a Swiss-Cheese Universe, Phys. Rev. D 77 (2008), 023003 (1-13). Also: Preprint arXiv:0710.5505v2 [astro-ph].
  72. Räsänen S: Light Propagation in Statistically Homogeneous and Isotropic Dust Universes, J. Cosmol. Astropart. Phys. 02 (2009), 011. Also: Preprint arXiv:0812.2872v2 [astro-ph].
  73. Räsänen S: Relation Between the Isotropy of the CMB and the Geometry of the Universe, Phys. Rev. D 79 (2009), 123522 (1-5). Also: Preprint arXiv:0903.3013v2 [astro-ph.CO].
  74. Gurzadyan V G, R Penrose: Concentric Circles in WMAP Data May Provide Evidence of Violent Pre-Big-Bang Activity, Preprint arXiv:1011.3706v1 [astro-ph.CO]
  75. Lasky P D, K Bolejko: The Effect of Pressure Gradients on Luminosity Distance-Redshift Relations, Class. Quantum Grav. 27 (2010), 035011 (13pp). Also: Preprint arXiv:1001.1159v1 [astro-ph.CO].
  76. Räsänen S: Light Propagation in Statistically Homogeneous and Isotropic Universes with General Matter Content, J. Cosmol. Astropart. Phys. 03 (2010), 018. Also: Preprint arXiv:0912.3370v1 [astro-ph.CO].
  77. Gurzadyan V G, R Penrose: CCC-Predicted Low-Variance Circles in CMB Sky and LCDM, Preprint arXiv:1104.5675v1 [astro-ph.CO]
  78. Liddle A R, M Cortês: Cosmic Microwave Background Anomalies in an Open Universe, Phys. Rev. Lett. 111 (2013), 111302 [5 pages]. Also: Preprint arXiv:1306.5698v1 [astro-ph.CO].
  79. Lim W C, M Regis, C Clarkson: Spherically Symmetric Cosmological Spacetimes with Dust and Radiation - Numerical Implementation, Preprint arXiv:1308.0902v1 [astro-ph.CO]
    NB: Numerical two-stage evaluation for a central observer of the Hubble expansion rate, the matter density, and the angular diameter distance, with special focus on void models. Regularity at centre enforced.
  80. Planck Collaboration: P A R Ade et al: Planck 2013 Results. I. Overview of Products and Scientific Results, Preprint arXiv:1303.5062v1 [astro-ph.CO]
    NB: First of an extended series of research papers on the results of analysis of data obtained by the European Space Agency’s Planck satellite.
  81. Planck Collaboration: P A R Ade et al: Planck 2013 Results. XVI. Cosmological Parameters, Preprint arXiv:1303.5076v1 [astro-ph.CO]
  82. Räsänen S: A covariant treatment of cosmic parallax, Preprint arXiv:1312.5738v1 [astro-ph.CO]


Selected References
Last revision: Fri, 20-12-2013